Dual modes of motility at the leading edge of migrating epithelial cell sheets.
نویسنده
چکیده
Purse-string healing is driven by contraction of actin/myosin cables that span cells at wound edges, and it is the predominant mode of closing small round wounds in embryonic and some adult epithelia. Wounds can also heal by cell crawling, and my colleagues and I have shown previously that the presence of unconstrained, straight edges in sheets of epithelial cells is a sufficient signal to induce healing by crawling. Here, it is reported that the presence of highly concave edges, which are free or physically constrained by an inert material (agarose), is sufficient to induce formation of purse strings. It was determined that neither of the two types of healing required cell damage or other potential stimuli by using the particularly gentle procedure of introducing gaps by digesting agarose blocks imbedded in the cell sheets. Movement by crawling depends on signaling by the EGF receptor (EGFR); however, this was not required for purse-string contraction. A migrating epithelial cell sheet usually produces finger-like projections of crawling cells. The cells between fingers contain continuous actin cables, which were also determined to contain myosin IIA and exhibit additional characteristics of purse strings. When crawling was blocked by inhibition of EGFR signaling, the concave regions continued to move, suggesting that both mechanisms contribute to propel the sheets forward. Wounding epithelial cell sheets causes activation of the EGFR, which triggers movement by crawling. The EGFR was found to be activated only at straight and convex edges, which explains how both types of movement can coexist at leading epithelial edges.
منابع مشابه
At the leading edge of three-dimensional cell migration.
Cells migrating on flat two-dimensional (2D) surfaces use actin polymerization to extend the leading edge of the plasma membrane during lamellipodia-based migration. This mode of migration is not universal; it represents only one of several mechanisms of cell motility in three-dimensional (3D) environments. The distinct modes of 3D migration are strongly dependent on the physical properties of ...
متن کاملA fence barrier method of leading edge cell capture for explorative biochemical research
The scratch or wound-healing assay is used ubiquitously for investigating re-epithelialisation and has already revealed the importance of cells comprising the leading edge of healing epithelial wounds. However it is currently limited to studying the effect of known biochemical agents on the tissue of choice. Here we present an adaptation that extends the utility of this model to encompass the c...
متن کاملThe helicase, DDX3X, interacts with poly(A)-binding protein 1 (PABP1) and caprin-1 at the leading edge of migrating fibroblasts and is required for efficient cell spreading
DDX3X, a helicase, can interact directly with mRNA and translation initiation factors, regulating the selective translation of mRNAs that contain a structured 5' untranslated region. This activity modulates the expression of mRNAs controlling cell cycle progression and mRNAs regulating actin dynamics, contributing to cell adhesion and motility. Previously, we have shown that ribosomes and trans...
متن کاملIntercellular adhesion molecule-1 expression on human corneal epithelial outgrowth from limbal explant in culture.
AIM To investigate the relation between intercellular adhesion molecule (ICAM)-1 expression and cellular dynamics occurring concomitantly with epithelial cell movement. METHODS Outgrowing epithelial sheets of human corneal epithelial (HCE) cells from cultured limbal explants were examined by immunoperoxidase staining with anti-ICAM-1 monoclonal antibody. An adhesion assay was performed using ...
متن کاملPolarized Endocytosis of the Keratinocyte Growth Factor Receptor in Migrating Cells: Role of Src-Signaling and Cortactin
Cell migration is a physiological process that requires endocytic trafficking and polarization of adhesion molecules and receptor tyrosine kinases (RTKs) to the leading edge. Many growth factors are able to induce motility by binding to specific RTK on target cells. Among them, keratinocyte growth factor (KGF or FGF7) and fibroblast growth factor 10 (FGF10), members of the FGF family, are motog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 39 شماره
صفحات -
تاریخ انتشار 2012